Honorary Chairs
Totok Prasetyo
Politeknik Negeri Semarang, Indonesia
Eni Dwi Wardihani
Politeknik Negeri Semarang, Indonesia
Lt Kdr Mohd Norsyarizad bin Razali
Universiti Pertahanan Nasional Malaysia, Malaysia
Lt Kdr Mohd Norsyarizad bin Razali
Universiti Pertahanan Nasional Malaysia, Malaysia
Efficient Energy Consumption in Extending Wireless Sensor Networks (WSNs) Lifetime
Abstract
Wireless Sensor Networks (WSNs) have gained a great deal of attention owing to their wide applications in multifarious situations and established the recent technological revolution. Two important challenges in WSNs are coverage and network lifetime. The latter, where to extend the lifetime of the network, is the most attractive issue recently. This task which required an amount of energy is done by sensor nodes, which distributed in remote locations and powered by a limited capacity of batteries has caused a limitation in both the lifetime and the performance of the WSNs. The preliminary reviews and surveys have provided a few solutions for this issue and can be classified into two main categories; energy optimization which has been addressed and discussed widely in this field of study and energy-wasting avoidance.
Biography :
Lt Kdr Assoc. Prof. Ts. Dr. Mohd Norsyarizad bin Razali is an associate professor in Computational Mathematics at the National Defence University of Malaysia, and serves as Dean of Defence Science and Technology Faculty. He received Ph.D and M.Sc from Universiti Teknologi Malaysia. Prior to his current field, he had ten years of experience as the Weapon, Electrical and Electronics Engineering Officer in the Royal Malaysian Navy. His research interests include numerical computing, parallel computing, optimization, scheduling, wireless sensor networks, underwater acoustics, and sustainable & renewable energy. He is a PI for a RM6 million worth research grant in Wave Energy Converter from Ministry of Energy and Natural Resource, Malaysia.
Naoyuki Kubota
Tokyo Metropolitan University, Japan
Naoyuki Kubota
Tokyo Metropolitan University, Japan
Topological Intelligence and Topological Twin
Abstract
Recently, various concepts on cyber-physical systems and digital twin have been proposed and discussed with the integration of information, intelligence, communication, and robot technologies. We often have to extract topological features and structures from given or measured big data to simulate a real-world phenomenon in the cyber world and to conduct multiscale and multiphysics simulations. Therefore, we proposed the concept of topological twin. The aim of topological twin is to (1) extract topological structures hidden implicitly in the real world, (2) reproduce them explicitly in the cyber world, and (3) simulate and analyze the real world in the cyber world. While we have to deal with the physical dynamics in the microscopic level, we have to deal with spatiotemporal qualitative relationships between objects, people, culture, and knowledge in the macroscopic level. Furthermore, we need a mesoscopic integration method connecting microscopic and macroscopic topological features. The topological twin plays the important role in extracting and connecting structures hidden in real world from the mutliscopic point of view. We can extract topological features and structures from big data, that are used as topological big data in different level of analysis. Furthermore, we need a multiscopic approach to deal with inference, learning, search, and prediction based on topological and graphical data as the methodology of topological intelligence. In this talk, first, we introduce the concept of multiscopic topological twin. Next, I explain various types of topological mapping methods, unsupervised learning methods, and graph-based methods related with topological intelligence. One of them is Growing Neural Gas (GNG) that can dynamically change the topological structure composed of nodes and edges. One important advantage of GNG is in the incremental learning capability of nodes and edges according to a target data distribution, but the computational cost of standard GNG is very expensive. Therefore, we proposed a method of multi-scale batch-learning GNG called Fast GNG. Next, we show the comparison result of Fast GNG with other methods. Furthermore, we show several experimental results of topological intelligence in trailer living laboratory, robot partners and mobility support robots. Finally, we discuss the applicability and future direction of multiscopic topological twin.Recently, various concepts on cyber-physical systems and digital twin have been proposed and discussed with the integration of information, intelligence, communication, and robot technologies. We often have to extract topological features and structures from given or measured big data to simulate a real-world phenomenon in the cyber world and to conduct multiscale and multiphysics simulations. Therefore, we proposed the concept of topological twin. The aim of topological twin is to (1) extract topological structures hidden implicitly in the real world, (2) reproduce them explicitly in the cyber world, and (3) simulate and analyze the real world in the cyber world. While we have to deal with the physical dynamics in the microscopic level, we have to deal with spatiotemporal qualitative relationships between objects, people, culture, and knowledge in the macroscopic level. Furthermore, we need a mesoscopic integration method connecting microscopic and macroscopic topological features. The topological twin plays the important role in extracting and connecting structures hidden in real world from the mutliscopic point of view. We can extract topological features and structures from big data, that are used as topological big data in different level of analysis. Furthermore, we need a multiscopic approach to deal with inference, learning, search, and prediction based on topological and graphical data as the methodology of topological intelligence. In this talk, first, we introduce the concept of multiscopic topological twin. Next, I explain various types of topological mapping methods, unsupervised learning methods, and graph-based methods related with topological intelligence. One of them is Growing Neural Gas (GNG) that can dynamically change the topological structure composed of nodes and edges. One important advantage of GNG is in the incremental learning capability of nodes and edges according to a target data distribution, but the computational cost of standard GNG is very expensive. Therefore, we proposed a method of multi-scale batch-learning GNG called Fast GNG. Next, we show the comparison result of Fast GNG with other methods. Furthermore, we show several experimental results of topological intelligence in trailer living laboratory, robot partners and mobility support robots. Finally, we discuss the applicability and future direction of multiscopic topological twin.
Biography :
Naoyuki Kubota is currently a Professor in the Department of Mechanical Systems Engineering, the Graduate School of Systems Design, and Director of Community-centric System Research Core, Tokyo Metropolitan University, Japan. He graduated from Osaka Kyoiku University in 1992, received the M.E. degree from Hokkaido University in 1994, and received the D.E. from Nagoya University, Nagoya, Japan, in 1997. He was an Assistant Professor and Lecturer at the Department of Mechanical Engineering, Osaka Institute of Technology, Japan, from 1997 to 2000. In 2000, he joined the Department of Human and Artificial Intelligence Systems, the School of Engineering, Fukui University, Japan, as an Associate Professor. He joined the Department of Mechanical Engineering, the Graduate School of Engineering, Tokyo Metropolitan University, Japan, as an Associate Professor in 2004. He was an Associate Professor from 2005 to 2012, and a Professor from 2012 at the Graduate School of Systems Design, Tokyo Metropolitan University, Japan. He was a Visiting Professor at University of Portsmouth, UK, in 2007 and 2009, and was an Invited Visiting Professor at Seoul National University from 2009 to 2012, and others. His current interests are in the fields of topological mapping, coevolutionary computation, spiking neural networks, perception-based robotics, robot partners, and informationally structured space. He has published more than 500 refereed journal and conference papers in the above research fields. He received the Best Paper Award of IEEE IECON 1996, IEEE CIRA 1997, MHS 2011, WAC 2012, HSI 2016, and so on. He was an associate editor of the IEEE Transactions on Fuzzy Systems from 1999 to 2010, the IEEE CIS Intelligent Systems Applications Technical Committee, Robotics Task Force Chair from 2007 to 2014, IEEE Systems, Man, and Cybernetics Society, Japan Chapter Chair since 2018, Vice Director, Tokyo Biomarker Innovation Research Association, Japan from 2020, and others.
Assoc. Prof. Dr. Erdila Indriani
Politeknik Energi dan Mineral Akamigas, Indonesia
Assoc. Prof. Dr. Erdila Indriani
Politeknik Energi dan Mineral Akamigas, Indonesia
Click Here for Biography and Topic
https://icist.asia/2023/keynote-speaker-4/
General Chair
Kurnianingsih
Politeknik Negeri Semarang, Indonesia
General co-Chairs
Nur Diyana Kamarudin
Universiti Pertahanan Nasional Malaysia, Malaysia
Eri Sato-Shimakawara
Tokyo Metropolitan University, Japan
Eri Sato-Shimakawara
Tokyo Metropolitan University, Japan
Material of Conference Speak :
- Title : Human robot interaction base on considering internal condition and individuality
Biography :
Assoc. Prof. Dr. Eri Sato-Shimokawara received her B.E., M.E., and D.E. in Systems Engineering Science from Tokyo Metropolitan Institute of Technology in 2002, 2004, and 2007. She was a Research Fellow of Japan Society for the Promotion of Science (JSPS) from 2004 to 2007. She was the Faculty of Systems Design of Tokyo Metropolitan University, as an Assistant Professor from 2007 to 2022. She has been an Associate Professor in the Faculty of Systems Design of Tokyo Metropolitan University, Japan, since 2022. She Her current research interests include human-machine interactions, multimodal interactions, soft computing, and intelligent robotics. She is a member of the Institute of Electrical and Electronics Engineers (IEEE), the Institute of Electronics Information and Communication Engineers (IEICE), the Japan Society for Fuzzy Theory and Intelligent Information (SOFT), and the Japanese Society for Artificial Intelligence (JSAI).
Asepta Surya Wardhana
Politeknik Energi dan Mineral Akamigas, Indonesia
Amiril Azizah
Politeknik Negeri Samarinda, Indonesia
Program Chair
Amin Suharjono
Politeknik Negeri Semarang, Indonesia
Program Co-Chairs
Mohd Rizal Mohd Isa
Universiti Pertahanan Nasional Malaysia, Malaysia
Astrie Kusuma Dewi
Politeknik Energi dan Mineral Akamigas, Indonesia
Technical Program Chair
Technical Program Co-Chairs
Insan Kamil
Politeknik Negeri Samarinda, Indonesia
Nur Ghaniaviyanto Ramadhan
Institut Teknologi Telkom Purwokerto, Indonesia
I Wayan Edi Arsawan
Politeknik Negeri Bali, Indonesia
Muslihah Binti Wook
Universiti Pertahanan Nasional Malaysia, Malaysia
Silvya Yusnica A
Politeknik Energi dan Mineral Akamigas, Indonesia
Session & Award Chairs
Garup Lambang Goro
Politeknik Negeri Semarang, Indonesia
Siti Noormiza Makhtar
Universiti Pertahanan Nasional Malaysia, Malaysia
Mohammad Adib Khairuddin
Universiti Pertahanan Nasional Malaysia, Malaysia
Publication Chair
Achmad Hamim
Politeknik Negeri Semarang, Indonesia
Afandi Nur Aziz Thohari
Politeknik Negeri Semarang, Indonesia
Mohd Sidek Fadhil bin Mohd Yunus
Universiti Pertahanan Nasional Malaysia, Malaysia
Fakroul Ridzuan Bin Hashim
Universiti Pertahanan Nasional Malaysia, Malaysia
Publicity Chair
Muhammad Irwan Yanwari
Politeknik Negeri Semarang, Indonesia
Ts. Suresh A/L Thanakodi
Universiti Pertahanan Nasional Malaysia, Malaysia
Suhaila binti Ismail
Universiti Pertahanan Nasional Malaysia, Malaysia
Treasurers
Anis Roihatin
Politeknik Negeri Semarang, Indonesia
Muhlasah Novitasari
Politeknik Negeri Semarang, Indonesia
Secretary
Ragil Tri Indrawati
Politeknik Negeri Semarang, Indonesia
Registration Commitee
Mellasanti Ayuwardani
Politeknik Negeri Semarang, Indonesia
Logistic Commitee
Aryanti Sari Dewi
Politeknik Negeri Semarang, Indonesia
Zuhara Nur Dintha
Politeknik Negeri Semarang, Indonesia